This article was downloaded by: [University of California, San Diego]

On: 07 August 2012, At: 12:13 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl20

Magnetic Field Effects on Photoelectrochemical Reactions of a Porphyrin-Viologen Linked Compound in an Ionic Liquid

Hironobu Tahara ^a , Hiroaki Yonemura ^b , Satoko Harada ^a & Sunao Yamada ^b

Version of record first published: 16 May 2011

To cite this article: Hironobu Tahara, Hiroaki Yonemura, Satoko Harada & Sunao Yamada (2011): Magnetic Field Effects on Photoelectrochemical Reactions of a Porphyrin-Viologen Linked Compound in an Ionic Liquid, Molecular Crystals and Liquid Crystals, 539:1, 121/[461]-124/[464]

To link to this article: http://dx.doi.org/10.1080/15421406.2011.566075

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^a Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan

^b Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan

Mol. Cryst. Liq. Cryst., Vol. 539: pp. 121/[461]–124/[464], 2011

Copyright © Taylor & Francis Group, LLC ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421406.2011.566075

Magnetic Field Effects on Photoelectrochemical Reactions of a Porphyrin-Viologen Linked Compound in an Ionic Liquid

HIRONOBU TAHARA,¹ HIROAKI YONEMURA,² SATOKO HARADA,¹ AND SUNAO YAMADA²

¹Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan ²Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan

Magnetic field effects (MFEs) on photoelectrochemical reaction of a porphyrinviologen linked compound with six methylene group (ZnP(n)V(n=6)) were examined in an ionic liquid ($[BMIM][BF_4]$) using two-electrode cell. A stable anodic photocurrent is produced by irradiating ZnP(6)V in $[BMIM][BF_4]$ with visible light, and the photocurrent clearly increased in the presence of a magnetic field. The MFEs are explained by radical pair mechanism. The magnitude of the MFEs is larger than those in electrodes modified with ZnP(n)V(n=4,6,8) as Langmuir-Blodgett films. The results are most likely ascribed to the properties of $[BMIM][BF_4]$.

Keywords Ionic liquid; magnetic field effect; photoelectrochemical reaction; porphyrin; viologen

Introduction

The mechanisms of photochemical reactions in the condensed phase have been explained by invoking magnetic field effects (MFEs) on reaction kinetics or yields [1]. Consequently, the magnetic field is expected to provide a novel means of controlling photoinduced electron-transfer and the subsequent processes. Previously, we examined MFEs on the photoelectrochemical reactions of photosensitive electrodes modified with zinc-tetraphenylporphyrin (ZnP)-viologen (V^{2+}) linked compounds [**ZnP(n)V** ($\mathbf{n} = 4,6,8$)] as Langmuir-Blodgett (LB) films [2–4] and with semiconductor nanoparticles [5,6]. Recently, to demonstrate the use of C_{60} in a photonic nanodevice we studied MFEs on the photoelectrochemical reactions of photosensitive electrodes modified with nanoclusters containing a positively charged C_{60} derivative and methylphenothiazine [7].

Address correspondence to Hiroaki Yonemura, Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: yonemura@mail.cstm.kyushu-u.ac.jp

Ionic liquids (ILs) are currently the focus of extensive investigation because they possess unique properties (negligible vapor pressure, high viscosity, high ionic conductivity, and high thermal, chemical, and electrochemical stabilities etc.) [8]. However, MFEs on the photoelectrochemical reactions in ILs have not yet been examined. In this study, we examined photoelectrochemical reaction of a $ZnP-V^{2+}$ linked compound with six methylene group (ZnP(n)V(n=6)) in an IL ($[BMIM][BF_4]$) using two-electrode cell.

Experimental

Amphiphilic $ZnP-V^{2+}$ linked compound [ZnP(6)V] (Fig. 1) was synthesized as reported in the previous paper [2]. [BMIM][BF4] (Figure 1) (TCI or Merck) and triethanolamine (TEOA) (Wako) were used without further purification. Cyclic voltammetry and differential pulse voltammetry were carried out on a ALS 420 model EQCM instrument (BAS) using the three-electrode cell. Photoelectrochemical measurements were performed using two-electrode cell containing an ITO electrode as a working electrode and a platinum electrode as a counter electrode by irradiation with a 150 W Xe lamp (Hamamatsu Photonics L2274) through a monochorometer with a potentiostat (Huso HECS-318C) in the presence of TEOA (0.1 M) as a sacrificial electron donor under nitrogen atmosphere [2–7]. MFEs on the photocurrent (\geq 370 nm) were measured as described in our previous publications [5–7].

Results and Discussion

Electrochemical and Photoelectrochemical Reactions in IL

Redox potentials of **ZnP(6)V** in **[BMIM][BF₄]** were measured by cyclic voltammetry and differential pulse voltammetry measurements. Two redox couples were observed $(E_{1/2}(ZnP^{+}/ZnP) = 0.39 \text{ V})$ and $E_{1/2}(V^{2+}/V^{+}) = -0.81 \text{ V}$ vs. $Fc^{+}/Fc)$. The redox potentials are different from those $(E_{1/2}(ZnP^{+}/ZnP) = 0.76 \sim 0.78 \text{ V})$ and $E_{1/2}(V^{2+}/V^{+}) = -0.49 \sim -0.50 \text{ V}$ vs. Ag/AgCl) in the electrodes modified with ZnP(n)V(n = 4,6,8) as LB films [2–4]. The Gibbs free energy driving forces (ΔG) for the intramolecular electron-transfer reactions of ZnP(6)V in $[BMIM][BF_4]$ from the singlet excited state $(^1ZnP^*)$ and the triplet excited state $(^3ZnP^*)$ of the ZnP to V^{2+} using the redox potentials of the ZnP and V^{2+} moieties were estimated to be $-0.84 \, eV$ and $-0.33 \, eV$, respectively. These results indicate that the intramolecular electron-transfer reactions of ZnP(6)V in $[BMIM][BF_4]$ from the $^1ZnP^*$ and the

Figure 1. Molecular Structures of $ZnP-V^{2+}$ linked compounds (ZnP(n)V (n=4,6,8)) and an ionic liquid ($[BMIM][BF_4]$).

 3 ZnP* to V²⁺ are thermodynamically favorable as similar to the LB-modified electrodes [2–4].

Irradiating $\mathbf{ZnP(6)V}$ in $[\mathbf{BMIM}][\mathbf{BF_4}]$ with visible light ($\geq 370\,\mathrm{nm}$) creates a stable anodic photocurrent using the two-electrode cell. The photocurrent action spectrum of $\mathbf{ZnP(6)V}$ agrees well with the absorption spectrum of the \mathbf{ZnP} moiety of $\mathbf{ZnP(6)V}$ in $[\mathbf{BMIM}][\mathbf{BF_4}]$. Therefore, the results of the photocurrent action spectrum and the above thermodynamical properties indicate that the photocurrent are attributable to the photoexcitation of the \mathbf{ZnP} moiety ($^1\mathbf{ZnP^*}$ and $^3\mathbf{ZnP^*}$) of $\mathbf{ZnP(6)V}$.

MFEs on the Photocurrents in IL

We examine the MFEs on the photoelectrochemical reaction of **ZnP(6)V** in **[BMIM][BF₄]**. The photocurrent increased with increasing magnetic field and became a constant above 50 mT. The magnitude of MFEs on the photocurrent is expressed as

$$Q = (I(B) - I(0))/I(0) \times 100, \tag{1}$$

where I(0) and I(B) are the photocurrent in the absence and presence of the magnetic field (B), respectively, as reported in the previous papers [2–7]. The Q value (%) increases with magnetic field for lower magnetic fields (B \leq 50 mT) and is constant for higher magnetic fields (B \geq 50 mT) (Fig. 2). The MFEs were similar to those in the LB-modified electrodes [2–4]. The above thermodynamic results suggest the photogeneration of triplet radical pairs, ${}^3(ZnP^+ \cdot -V^+ \cdot)$ via an intramolecular electron-transfer process from ${}^3ZnP^*$ to V^{2+} . Therefore, the MFEs are explained by the photogenerated triplet radical pair (radical pair mechanism) [1], as similar to the previous papers [2–4].

The intersystem crossing process from ${}^{3}(ZnP^{+}\cdot -V^{+}\cdot)$ to singlet radical pairs, ${}^{1}(ZnP^{+}\cdot -V^{+}\cdot)$ becomes the rate-determining step for the triplet radical pair decay via reverse electron-transfer to the ground state. Under sufficiently strong magnetic fields (B \geq 50 mT), intersystem crossing is controlled by relaxation from triplet

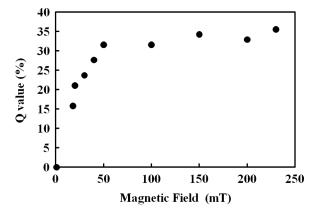


Figure 2. Magnetic field dependence of the Q values of ZnP(6)V in [BMIM][BF₄] using the two-electrode cell.

sublevels to the corresponding singlet [2–4]. As intersystem crossing is suppressed by the magnetic field, the lifetime for the photogenerated radical pair increases and the probability of electron-transfer from the reduced viologen (V^+) to the ITO electrode increases. As a consequence, the photocurrent increases in the presence of a magnetic field, as shown in Figure 2. The above mechanism is also supported by the result that the MFEs on the lifetime of photogenerated radical pairs for $\mathbf{ZnP(6)V}$ in $\mathbf{[BMIM][BF_4]}$ were observed [9]. The magnitude of the MFEs ($\mathbf{Q_{max}} = \mathbf{ca.} \ 35\%$) in the present study is larger than those ($\mathbf{Q_{max}} = \mathbf{ca.} \ 15\%$) in the previous papers [2–4]. It is probably responsible for the unique properties of $\mathbf{[BMIM][BF_4]}$ as an IL. Further investigations on the mechanism of the MFEs and the effect of the IL on the MFE in the present system using the other methods including time-resolved ESR measurement are now in progress.

Acknowledgment

The present study was supported by the Mazda Foundation and by Grants-in-Aid for Scientific Research (Nos. 19022027 and 21550135), Nanotechnology Network Project (Kyushu-area) and Global COE Program "Science for Future Molecular Systems" from MEXT of Japan.

References

- [1] Steiner, U. E., & Ulrich, T. (1989). Chem. Rev., 89, 51.
- [2] Yonemura, H., Ohishi, K., & Matsuo, T. (1996). Chem. Lett., 661.
- [3] Yonemura, H., Ohishi, K., & Matsuo, T. (1997). Mol. Cryst. Liq. Cryst., 294, 221.
- [4] Yonemura, H., Tahara, H., Ohishi, K., Iida, S., & Yamada, S. (2010). Jpn. J. Appl. Phys., 49, 01AD04.
- [5] Yonemura, H., Yoshida, M., Mitake, S., & Yamada, S. (1999). Electrochemistry, 67, 1209.
- [6] Yonemura, H., Yoshida, M., & Yamada, S. (2001). Stud. Surf. Sci. Catal., 132, 741.
- [7] Yonemura, H., Kuroda, N., & Yamada, S. (2006). Sci. Technol. Adv. Mater., 7, 643.
- [8] Endres, F., & Abedinw, S. Z. E. (2006). Phys. Chem. Chem. Phys., 8, 2101.
- [9] Tahara, H., Yonemura, H., Harada, S., & Yamada, S. Manuscript in preparation.